
UNIT 2

Mr Sana Swaroop

WEB TECHNOLOGIES

UNIT -2

Java Script

JAVASCRIPT – OVERVIEW

What is JavaScript?

Javascript is a dynamic computer programming language. It is lightweight and most

commonly used as a part of web pages, whose implementations allow client-side

script to interact with the user and make dynamic pages. It is an interpreted

programming language with object-oriented capabilities.

JavaScript was first known as LiveScript, but Netscape changed its name to

JavaScript, possibly because of the excitement being generated by Java. JavaScript

made its first appearance in Netscape 2.0 in 1995 with the name LiveScript. The

general-purpose core of the language has been embedded in Netscape, Internet

Explorer, and other web browsers.

The ECMA-262 Specification defined a standard version of the core JavaScript

language.

 JavaScript is a lightweight, interpreted programming language.

 Designed for creating network-centric applications.

 Complementary to and integrated with Java.

 Complementary to and integrated with HTML.

 Open and cross-platform.

Client-Side JavaScript

Client-side JavaScript is the most common form of the language. The script should

be included in or referenced by an HTML document for the code to be interpreted by

the browser.

It means that a web page need not be a static HTML, but can include programs that

interact with the user, control the browser, and dynamically create HTML content.

The JavaScript client-side mechanism provides many advantages over traditional

CGI server-side scripts. For example, you might use JavaScript to check if the user

has entered a valid e-mail address in a form field.

http://www.ecma-international.org/publications/index.html

The JavaScript code is executed when the user submits the form, and only if all the

entries are valid, they would be submitted to the Web Server.

JavaScript can be used to trap user-initiated events such as button clicks, link

navigation, and other actions that the user initiates explicitly or implicitly.

Advantages of JavaScript

The merits of using JavaScript are:

 Less server interaction: You can validate user input before sending the

page off to the server. This saves server traffic, which means less load on

your server.

 Immediate feedback to the visitors: They don't have to wait for a page

reload to see if they have forgotten to enter something.

 Increased interactivity: You can create interfaces that react when the user

hovers over them with a mouse or activates them via the keyboard.

 Richer interfaces: You can use JavaScript to include such items as drag-and-

drop components and sliders to give a Rich Interface to your site visitors.

Limitations of JavaScript

We cannot treat JavaScript as a full-fledged programming language. It lacks the

following important features:

 Client-side JavaScript does not allow the reading or writing of files. This has

been kept for security reason.

 JavaScript cannot be used for networking applications because there is no

such support available.

 JavaScript doesn't have any multithreading or multiprocessor capabilities.

Once again, JavaScript is a lightweight, interpreted programming language that

allows you to build interactivity into otherwise static HTML pages.

JavaScript Development Tools

One of major strengths of JavaScript is that it does not require expensive

development tools. You can start with a simple text editor such as Notepad. Since it

is an interpreted language inside the context of a web browser, you don't even

need to buy a compiler.

To make our life simpler, various vendors have come up with very nice JavaScript

editing tools. Some of them are listed here:

 Microsoft FrontPage: Microsoft has developed a popular HTML editor called

FrontPage. FrontPage also provides web developers with a number of

JavaScript tools to assist in the creation of interactive websites.

 Macromedia Dreamweaver MX: Macromedia Dreamweaver MX is a very

popular HTML and JavaScript editor in the professional web development crowd.

It provides several handy prebuilt JavaScript components, integrates well with

databases, and conforms to new standards such as XHTML and XML.

 Macromedia HomeSite 5: HomeSite 5 is a well-liked HTML and JavaScript

editor from Macromedia that can be used to manage personal websites

effectively.

Where is JavaScript Today?

The ECMAScript Edition 5 standard will be the first update to be released in over

four years. JavaScript 2.0 conforms to Edition 5 of the ECMAScript standard, and

the difference between the two is extremely minor.

The specification for JavaScript 2.0 can be found on the following site:
http://www.ecmascript.org/

Today, Netscape's JavaScript and Microsoft's JScript conform to the ECMAScript

standard, although both the languages still support the features that are not a part

of the standard.

http://www.ecmascript.org/

JAVASCRIPT – SYNTAX

JavaScript can be implemented using JavaScript statements that are placed within

the <script>... </script> HTML tags in a web page.

You can place the <script> tags, containing your JavaScript, anywhere within you

web page, but it is normally recommended that you should keep it within the

<head> tags.

The <script> tag alerts the browser program to start interpreting all the text between

these tags as a script. A simple syntax of your JavaScript will appear as follows.

<script ...>

JavaScript code

</script>

The script tag takes two important attributes:

 Language: This attribute specifies what scripting language you are using.

Typically, its value will be javascript. Although recent versions of HTML (and

XHTML, its successor) have phased out the use of this attribute.

 Type: This attribute is what is now recommended to indicate the scripting

language in use and its value should be set to "text/javascript".

So your JavaScript syntax will look as follows.

<script language="javascript" type="text/javascript">

JavaScript code

</script>

Your First JavaScript Code

Let us take a sample example to print out "Hello World". We added an optional HTML

comment that surrounds our JavaScript code. This is to save our code from a browser

that does not support JavaScript. The comment ends with a "//-->". Here "//" signifies

a comment in JavaScript, so we add that to prevent a browser from reading

the end of the HTML comment as a piece of JavaScript code. Next, we call a

function document.write which writes a string into our HTML document.

This function can be used to write text, HTML, or both. Take a look at the following

code.

<html>

<body>

<script language="javascript" type="text/javascript">

<!--

document.write ("Hello World!")

//-->

</script>

</body>

</html>

This code will produce the following result:

Hello World!

Whitespace and Line Breaks

JavaScript ignores spaces, tabs, and newlines that appear in JavaScript programs.

You can use spaces, tabs, and newlines freely in your program and you are free to

format and indent your programs in a neat and consistent way that makes the code

easy to read and understand.

Semicolons are Optional

Simple statements in JavaScript are generally followed by a semicolon character,

just as they are in C, C++, and Java. JavaScript, however, allows you to omit this

semicolon if each of your statements are placed on a separate line. For example,

the following code could be written without semicolons.

<script language="javascript" type="text/javascript">

<!--

var1 = 10

var2 = 20

//-->

</script>

But when formatted in a single line as follows, you must use semicolons:

<script language="javascript" type="text/javascript">

<!--

var1 = 10; var2 = 20;

//-->

</script>

Note: It is a good programming practice to use semicolons.

Case Sensitivity

JavaScript is a case-sensitive language. This means that the language keywords,

variables, function names, and any other identifiers must always be typed with a

consistent capitalization of letters.

So the identifiers Time and TIME will convey different meanings in JavaScript.

NOTE: Care should be taken while writing variable and function names in JavaScript.

Comments in JavaScript

JavaScript supports both C-style and C++-style comments. Thus:

 Any text between a // and the end of a line is treated as a comment and is

ignored by JavaScript.

 Any text between the characters /* and */ is treated as a comment. This

may span multiple lines.

 JavaScript also recognizes the HTML comment opening sequence <!--. JavaScript

treats this as a single-line comment, just as it does the // comment.

 The HTML comment closing sequence --> is not recognized by JavaScript so

it should be written as //-->.

Example

The following example shows how to use comments in JavaScript.

<script language="javascript"

type="text/javascript"> <!--

// This is a comment. It is similar to comments in C++

/*

* This is a multiline comment in JavaScript

* It is very similar to comments in C Programming

*/

//-->

</script>

JAVASCRIPT – ENABLING

All the modern browsers come with built-in support for JavaScript. Frequently, you

may need to enable or disable this support manually. This chapter explains the

procedure of enabling and disabling JavaScript support in your browsers: Internet

Explorer, Firefox, chrome, and Opera.

JavaScript in Internet Explorer

Here are the steps to turn on or turn off JavaScript in Internet Explorer:

 Follow Tools -> Internet Options from the menu.

 Select Security tab from the dialog box.

 Click the Custom Level button.

 Scroll down till you find the Scripting option.

 Select Enable radio button under Active scripting.

 Finally click OK and come out.

To disable JavaScript support in your Internet Explorer, you need to select Disable

radio button under Active scripting.

JavaScript in Firefox

Here are the steps to turn on or turn off JavaScript in Firefox:

 Open a new tab -> type about: config in the address bar.

 Then you will find the warning dialog. Select I’ll be careful, I promise!

 Then you will find the list of configure options in the browser.

 In the search bar, type javascript.enabled.

 There you will find the option to enable or disable javascript by right-clicking

on the value of that option -> select toggle.

If javascript.enabled is true; it converts to false upon clicking toogle. If javascript

is disabled; it gets enabled upon clicking toggle.

JavaScript in Chrome

Here are the steps to turn on or turn off JavaScript in Chrome:

 Click the Chrome menu at the top right hand corner of your browser.

 Select Settings.

 Click Show advanced settings at the end of the page.

 Under the Privacy section, click the Content settings button.

 In the "Javascript" section, select "Do not allow any site to run JavaScript" or

"Allow all sites to run JavaScript (recommended)".

JavaScript in Opera

Here are the steps to turn on or turn off JavaScript in Opera:

 Follow Tools-> Preferences from the menu.

 Select Advanced option from the dialog box.

 Select Content from the listed items.

 Select Enable JavaScript checkbox.

 Finally click OK and come out.

To disable JavaScript support in Opera, you should not select the Enable

JavaScript checkbox.

Warning for Non-JavaScript Browsers

If you have to do something important using JavaScript, then you can display a

warning message to the user using <noscript> tags.

You can add a noscript block immediately after the script block as follows:

<html>

<body>

<script language="javascript"

type="text/javascript"> <!--

document.write ("Hello World!")

//-->

</script>

<noscript>

Sorry...JavaScript is needed to go ahead.

</noscript>

</body>

</html>

Now, if the user's browser does not support JavaScript or JavaScript is not enabled,

then the message from </noscript> will be displayed on the screen.

JAVASCRIPT – PLACEMENT

There is a flexibility given to include JavaScript code anywhere in an HTML document.
However the most preferred ways to include JavaScript in an HTML file are as follows:

 Script in <head>...</head> section.

 Script in <body>...</body> section.

 Script in <body>...</body> and <head>...</head> sections.

 Script in an external file and then include in <head>...</head> section.

In the following section, we will see how we can place JavaScript in an HTML file in

different ways.

JavaScript in <head>...</head> Section

If you want to have a script run on some event, such as when a user clicks

somewhere, then you will place that script in the head as follows.

<html>

<head>

<script type="text/javascript">

<!--

function sayHello() {

alert("Hello World")

}

//-->

</script>

</head>

<body>

Click here for the result

<input type="button" onclick="sayHello()" value="Say Hello" />

</body>

</html>

This code will produce the following results:

Click here for the result

Say Hello

JavaScript in <body>...</body> Section

If you need a script to run as the page loads so that the script generates content in

the page, then the script goes in the <body> portion of the document. In this case,

you would not have any function defined using JavaScript. Take a look at the

following code.

<html>

<head>

</head>

<body>

<script type="text/javascript">

<!--

document.write("Hello World")

//-->

</script>

<p>This is web page body </p>

</body>

</html>

This code will produce the following results:

Hello World

This is web page body

JavaScript in <body> and <head> Sections

You can put your JavaScript code in <head> and <body> section altogether as

follows.

<html>

<head>

<script type="text/javascript">

<!--

function sayHello() {

alert("Hello World")

}

//-->

</script>

</head>

<body>

<script type="text/javascript">

<!--

document.write("Hello World")

//-->

</script>

<input type="button" onclick="sayHello()" value="Say Hello" />

</body>

</html>

This code will produce the following result.

HelloWorld

Say Hello

JavaScript in External File

As you begin to work more extensively with JavaScript, you will be likely to find

that there are cases where you are reusing identical JavaScript code on multiple

pages of a site.

You are not restricted to be maintaining identical code in multiple HTML files. The

script tag provides a mechanism to allow you to store JavaScript in an external file

and then include it into your HTML files.

Here is an example to show how you can include an external JavaScript file in your

HTML code using script tag and its src attribute.

<html>

<head>

<script type="text/javascript" src="filename.js" ></script>

</head>

<body>

.......

</body>

</html>

To use JavaScript from an external file source, you need to write all your JavaScript

source code in a simple text file with the extension ".js" and then include that file

as shown above.

For example, you can keep the following content in filename.js file and then you

can use sayHello function in your HTML file after including the filename.js file.

function sayHello() {

alert("Hello World")

}

JAVASCRIPT – VARIABLES

JavaScript Datatypes

One of the most fundamental characteristics of a programming language is the set

of data types it supports. These are the type of values that can be represented and

manipulated in a programming language.

JavaScript allows you to work with three primitive data types:

 Numbers, e.g., 123, 120.50 etc.

 Strings of text, e.g. "This text string" etc.

 Boolean, e.g. true or false.

JavaScript also defines two trivial data types, null and undefined, each of which

defines only a single value. In addition to these primitive data types, JavaScript

supports a composite data type known as object. We will cover objects in detail in

a separate chapter.

Note: Java does not make a distinction between integer values and floating-point

values. All numbers in JavaScript are represented as floating-point values.

JavaScript represents numbers using the 64-bit floating-point format defined by the

IEEE 754 standard.

JavaScript Variables

Like many other programming languages, JavaScript has variables. Variables can

be thought of as named containers. You can place data into these containers and

then refer to the data simply by naming the container.

Before you use a variable in a JavaScript program, you must declare it. Variables

are declared with the var keyword as follows.

<script type="text/javascript">

<!--

var money;

var name;

//-->

</script>

You can also declare multiple variables with the same var keyword as follows:

<script type="text/javascript">

<!--

var money, name;

//-->

</script>

Storing a value in a variable is called variable initialization. You can do variable

initialization at the time of variable creation or at a later point in time when you

need that variable.

For instance, you might create a variable named money and assign the value

2000.50 to it later. For another variable, you can assign a value at the time of

initialization as follows.

<script type="text/javascript">

<!--

var name = "Ali";

var money;

money = 2000.50;

//-->

</script>

Note: Use the var keyword only for declaration or initialization, once for the life of

any variable name in a document. You should not re-declare same variable twice.

JavaScript is untyped language. This means that a JavaScript variable can hold a

value of any data type. Unlike many other languages, you don't have to tell

JavaScript during variable declaration what type of value the variable will hold. The

value type of a variable can change during the execution of a program and

JavaScript takes care of it automatically.

JavaScript Variable Scope

The scope of a variable is the region of your program in which it is defined.

JavaScript variables have only two scopes.

 Global Variables: A global variable has global scope which means it can be

defined anywhere in your JavaScript code.

 Local Variables: A local variable will be visible only within a function where

it is defined. Function parameters are always local to that function.

Within the body of a function, a local variable takes precedence over a global

variable with the same name. If you declare a local variable or function parameter

with the same name as a global variable, you effectively hide the global variable.

Take a look into the following example.

<script type="text/javascript">

<!--

var myVar = "global"; // Declare a global

variable function checkscope() {

var myVar = "local"; // Declare a local variable

document.write(myVar);

}

//-->

</script>

It will produce the following result:

Local

JavaScript Variable Names

While naming your variables in JavaScript, keep the following rules in mind.

 You should not use any of the JavaScript reserved keywords as a variable

name. These keywords are mentioned in the next section. For example,

break or boolean variable names are not valid.

 JavaScript variable names should not start with a numeral (0-9). They must

begin with a letter or an underscore character. For example, 123test is an

invalid variable name but _123test is a valid one.

 JavaScript variable names are case-sensitive. For example, Name and name

are two different variables.

JavaScript Reserved Words

A list of all the reserved words in JavaScript are given in the following table. They

cannot be used as JavaScript variables, functions, methods, loop labels, or any

object names.

abstract else Instanceof switch

boolean enum int synchronized

break export interface this

byte extends long throw

case false native throws

catch final new transient

char finally null true

class float package try

const for private typeof

continue function protected var

debugger goto public void

default if return volatile

delete implements short while

do import static with

double in super

JAVASCRIPT – OPERATORS

What is an Operator?

Let us take a simple expression 4 + 5 is equal to 9. Here 4 and 5 are called

operands and ‘+’ is called the operator. JavaScript supports the following types of

operators.

 Arithmetic Operators

 Comparison Operators

 Logical (or Relational) Operators

 Assignment Operators

 Conditional (or ternary) Operators

Let’s have a look at all the operators one by one.

Arithmetic Operators

JavaScript supports the following arithmetic operators:

Assume variable A holds 10 and variable B holds 20, then:

S. No. Operator and Description

+ (Addition)

1 Adds two operands

Ex: A + B will give 30

- (Subtraction)

2 Subtracts the second operand from the first

Ex: A - B will give -10

 * (Multiplication)

3 Multiply both operands

 Ex: A * B will give 200

 / (Division)

4 Divide the numerator by the denominator

 Ex: B / A will give 2

 % (Modulus)

5 Outputs the remainder of an integer division

 Ex: B % A will give 0

 ++ (Increment)

6 Increases an integer value by one

 Ex: A++ will give 11

 -- (Decrement)

7 Decreases an integer value by one

 Ex: A-- will give 9

Note: Addition operator (+) works for Numeric as well as Strings. e.g. "a" + 10 will

give "a10".

Example
The following code shows how to use arithmetic operators in JavaScript.

<html>

<body>

<script type="text/javascript">

<!--

var a = 33;

var b = 10;

var c = "Test";

var linebreak = "
";

document.write("a + b = ");

result = a + b;

document.write(result);

document.write(linebreak);

document.write("a - b = ");

result = a - b;

document.write(result);

document.write(linebreak);

document.write("a / b = ");

result = a / b;

document.write(result);

document.write(linebreak);

document.write("a % b = ");

result = a % b;

document.write(result);

document.write(linebreak);

document.write("a + b + c = ");

result = a + b + c;

document.write(result);

document.write(linebreak);

a = a++;

document.write("a++ = ");

result = a++;

document.write(result);

document.write(linebreak);

b = b--;

document.write("b-- = ");

result = b--;

document.write(result);

document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and then try...</p>

</body>

</html>

Output

a + b = 43
a - b = 23
a / b = 3.3
a % b = 3
a + b + c = 43Test
a++ = 33
b-- = 10

Set the variables to different values and then try...

Comparison Operators

JavaScript supports the following comparison operators:

Assume variable A holds 10 and variable B holds 20, then:

S.No

Operator and Description

 == (Equal)

1
 Checks if the value of two operands are equal or not, if yes, then

the condition becomes true.

 Ex: (A == B) is not true.

 != (Not Equal)

2
 Checks if the value of two operands are equal or not, if the values

are not equal, then the condition becomes true.

 Ex: (A != B) is true.

 > (Greater than)

3
 Checks if the value of the left operand is greater than the value of

the right operand, if yes, then the condition becomes true.

 Ex: (A > B) is not true.

 < (Less than)

4
 Checks if the value of the left operand is less than the value of the

right operand, if yes, then the condition becomes true.

 Ex: (A < B) is true.

 >= (Greater than or Equal to)

Checks if the value of the left operand is greater than or equal to

5 the value of the right operand, if yes, then the condition becomes

true.

Ex: (A >= B) is not true.

<= (Less than or Equal to)

6 Checks if the value of the left operand is less than or equal to the
value of the right operand, if yes, then the condition becomes true.
Ex: (A <= B) is true.

Example
The following code shows how to use comparison operators in JavaScript.

<html>

<body>

<script type="text/javascript">

<!--

var a = 10;

var b = 20;

var linebreak = "
";

document.write("(a == b) => ");

result = (a == b);

document.write(result);

document.write(linebreak);

document.write("(a < b) => ");

result = (a < b);

document.write(result);

document.write(linebreak);

document.write("(a > b) => ");

result = (a > b);

document.write(result);

document.write(linebreak);

document.write("(a != b) => ");

result = (a != b);

document.write(result);

document.write(linebreak);

document.write("(a >= b) => ");

result = (a >= b);

document.write(result);

document.write(linebreak);

document.write("(a <= b) => ");

result = (a <= b);

document.write(result);

document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and
then try...</p>

</body>

</html>

Output

(a == b) => false
(a < b) => true
(a > b) => false
(a != b) => true
(a >= b) => false

(a <= b) => true

Set the variables to different values and different operators and
then try...

Logical Operators

JavaScript supports the following logical operators:

Assume variable A holds 10 and variable B holds 20, then:

S.No

Operator and Description

 && (Logical AND)

1 If both the operands are non-zero, then the condition becomes true.

 Ex: (A && B) is true.

 || (Logical OR)

2 If any of the two operands are non-zero, then the condition becomes true.

 Ex: (A || B) is true.

 ! (Logical NOT)

3
 Reverses the logical state of its operand. If a condition is true, then the

Logical NOT operator will make it false.

 Ex: ! (A && B) is false.

Example

Try the following code to learn how to implement Logical Operators in JavaScript.

<html>

<body>

<script type="text/javascript">

<!--

var a = true;

var b = false;

var linebreak = "
";

document.write("(a && b) => ");

result = (a && b);

document.write(result);

document.write(linebreak);

document.write("(a || b) => ");

result = (a || b);

document.write(result);

document.write(linebreak);

document.write("!(a && b) => ");

result = (!(a && b));

document.write(result);

document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and
then try...</p>

</body>

</html>

Output

(a && b) => false
(a || b) => true
!(a && b) => true

Set the variables to different values and different operators and
then try...

Bitwise Operators

JavaScript supports the following bitwise operators:

Assume variable A holds 2 and variable B holds 3, then:

S.No Operator and Description

& (Bitwise AND)

1 It performs a Boolean AND operation on each bit of its integer

arguments. Ex: (A & B) is 2.

| (BitWise OR)

2 It performs a Boolean OR operation on each bit of its integer

arguments. Ex: (A | B) is 3.

3 ^ (Bitwise XOR)

It performs a Boolean exclusive OR operation on each bit of its integer

arguments. Exclusive OR means that either operand one is true or

operand two is true, but not both.

Ex: (A ^ B) is 1.

~ (Bitwise Not)

4 It is a unary operator and operates by reversing all the bits in the

operand. Ex: (~B) is -4.

<< (Left Shift)

It moves all the bits in its first operand to the left by the number of places

5 specified in the second operand. New bits are filled with zeros. Shifting a
value left by one position is equivalent to multiplying it by 2, shifting two
positions is equivalent to multiplying by 4, and so on.

Ex: (A << 1) is 4.

>> (Right Shift)

6 Binary Right Shift Operator. The left operand’s value is moved right by the
number of bits specified by the right operand.

Ex: (A >> 1) is 1.

>>> (Right shift with Zero)

7 This operator is just like the >> operator, except that the bits shifted in on the
left are always zero.

Ex: (A >>> 1) is 1.

Example
Try the following code to implement Bitwise operator in JavaScript.

<html>

<body>

<script type="text/javascript">

<!--

var a = 2; // Bit presentation 10

var b = 3; // Bit presentation 11

var linebreak = "
";

document.write("(a & b) => ");

result = (a & b);

document.write(result);

document.write(linebreak);

document.write("(a | b) => ");

result = (a | b);

document.write(result);

document.write(linebreak);

document.write("(a ^ b) => ");

result = (a ^ b);

document.write(result);

document.write(linebreak);

document.write("(~b) => ");

result = (~b);

document.write(result);

document.write(linebreak);

document.write("(a << b) => ");

result = (a << b);

document.write(result);

document.write(linebreak);

document.write("(a >> b) => ");

result = (a >> b);

document.write(result);

document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and
then try...</p>

</body>

</html>

Output

(a & b) => 2
(a | b) => 3
(a ^ b) => 1
(~b) => -4
(a << b) => 16
(a >> b) => 0

Set the variables to different values and different operators and
then try...

Assignment Operators

JavaScript supports the following assignment operators:

S.No Operator and Description

= (Simple Assignment)
1

Assigns values from the right side operand to the left side operand

Ex: C = A + B will assign the value of A + B into C

+= (Add and Assignment)

2 It adds the right operand to the left operand and assigns the result to the left
operand.

Ex: C += A is equivalent to C = C + A

-= (Subtract and Assignment)

3 It subtracts the right operand from the left operand and assigns the result to
the left operand.

Ex: C -= A is equivalent to C = C - A

*= (Multiply and Assignment)

4 It multiplies the right operand with the left operand and assigns the result to
the left operand.

Ex: C *= A is equivalent to C = C * A

/= (Divide and Assignment)

5 It divides the left operand with the right operand and assigns the result to the
left operand.

Ex: C /= A is equivalent to C = C / A

%= (Modules and Assignment)

6 It takes modulus using two operands and assigns the result to the left operand.

Ex: C %= A is equivalent to C = C % A

Note: Same logic applies to Bitwise operators, so they will become <<=, >>=,

>>=, &=, |= and ^=.

Example
Try the following code to implement assignment operator in JavaScript.

<html>

<body>

<script type="text/javascript">

<!--

var a = 33;

var b = 10;

var linebreak = "
";

document.write("Value of a => (a = b) => ");

result = (a = b);

document.write(result);

document.write(linebreak);

document.write("Value of a => (a += b) => ");

result = (a += b);

document.write(result);

document.write(linebreak);

document.write("Value of a => (a -= b) => ");

result = (a -= b);

document.write(result);

document.write(linebreak);

document.write("Value of a => (a *= b) => ");

result = (a *= b);

document.write(result);

document.write(linebreak);

document.write("Value of a => (a /= b) => ");

result = (a /= b);

document.write(result);

document.write(linebreak);

document.write("Value of a => (a %= b) => ");

result = (a %= b);

document.write(result);

document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and
then try...</p>

</body>

</html>

Output

Value of a => (a = b) => 10
Value of a => (a += b) => 20
Value of a => (a -= b) => 10
Value of a => (a *= b) => 100
Value of a => (a /= b) => 10
Value of a => (a %= b) => 0

Set the variables to different values and different operators and
then try...

Miscellaneous Operators

We will discuss two operators here that are quite useful in JavaScript: the

conditional operator (? :) and the typeof operator.

Conditional Operator (? :)

The conditional operator first evaluates an expression for a true or false value and

then executes one of the two given statements depending upon the result of the

evaluation.

S.No Operator and Description

? : (Conditional)
1

If Condition is true? Then value X : Otherwise value Y

Example
Try the following code to understand how the Conditional Operator works in

JavaScript.

<html>

<body>

<script type="text/javascript">

<!--

var a = 10;

var b = 20;

var linebreak = "
";

document.write ("((a > b) ? 100 : 200) => ");

result = (a > b) ? 100 : 200;

document.write(result);

document.write(linebreak);

document.write ("((a < b) ? 100 : 200) => ");

result = (a < b) ? 100 : 200;

document.write(result);

document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and
then try...</p>

</body>

</html>

Output

((a > b) ? 100 : 200) => 200
((a < b) ? 100 : 200) => 100

Set the variables to different values and different operators and
then try...

typeof Operator

The typeof operator is a unary operator that is placed before its single operand, which

can be of any type. Its value is a string indicating the data type of the operand.

The typeof operator evaluates to "number", "string", or "boolean" if its operand is a

number, string, or boolean value and returns true or false based on the evaluation.

Here is a list of the return values for the typeof Operator.

Type

String Returned by typeof

Number "number"

String "string"

Boolean "boolean"

Object "object"

Function "function"

Undefined "undefined"

Null "object"

Example
The following code shows how to implement typeof operator.

<html>

<body>

<script type="text/javascript">

<!--

var a = 10;

var b = "String";

var linebreak = "
";

result = (typeof b == "string" ? "B is String" : "B is Numeric");

document.write("Result => ");

document.write(result);

document.write(linebreak);

result = (typeof a == "string" ? "A is String" : "A is Numeric");

document.write("Result => ");

document.write(result);

document.write(linebreak);

//-->

</script>

<p>Set the variables to different values and different operators and then
try...</p>

</body>

</html>

Output

Result => B is String
Result => A is Numeric

Set the variables to different values and different operators and
then try...

